Revealing phase evolution mechanism for stabilizing formamidinium-based lead halide perovskites by a key intermediate phase
نویسندگان
چکیده
•A key phase transition intermediate (8H phase) was isolated and identified•Complete evolution of FAPbX3 by the 8H single crystal is provided•Effects doping anions cations on stabilization are revealed•Rational design for fabrication highly efficient stable PSCs suggested The stability formamidinium lead halide (FAPbX3) perovskites crucial to long-term perovskite solar cells, while a molecular-level understanding process mechanism still lacking. We crystal, phase, which composed both face-sharing corner-sharing octahedrons and, thus, creates cubic, olive-like peanut-like cages. helps complete from viewpoint structural chemistry also reveals underlying roles in stabilizing FA-based according Pauling’s rules. could indicate novel interfacial structure phase. These findings insights will form practical guidance rationally preparing high-quality devices. FAPbI3 (FA+ = formamidinium) perovskite, one most basic components nowadays cells (PCSs), undergoes spontaneous investigations Here, we report study based isolation identification series intermediates. A with unique discovered, elucidate perovskites. Our new insight rules not only deepens maximizing concentrations halogens cubic cages but forms suggestion high-performance PCSs controlling factors such as composition, precursor solution, stoichiometry, additives. Metal materials have attracted tremendous attention optoelectronic device applications, especially (PSCs), because their high performance photoelectric conversion efficiency1Kim G. Min H. Lee K.S. D.Y. Yoon S.M. Seok S.I. Impact strain relaxation ?-formamidinium iodide cells.Science. 2020; 370: 108-112https://doi.org/10.1126/science.abc4417Crossref PubMed Scopus (309) Google Scholar, 2Yoo J.J. Seo Chua M.R. Park T.G. Lu Y. Rotermund F. Kim Y.-K. Moon C.S. Jeon N.J. Correa-Baena J.-P. et al.Efficient via improved carrier management.Nature. 2021; 590: 587-593https://doi.org/10.1038/s41586-021-03285-wCrossref (399) 3NRELBest Research-cell efficiency chart. National Renewable Energy Laboratory, 2020https://www.nrel.gov/pv/cell-efficiency.htmlGoogle 4Jeon Noh J.H. Yang W.S. Y.C. Ryu S. J. Compositional engineering cells.Nature. 2015; 517: 476-480https://doi.org/10.1038/nature14133Crossref (4430) 5Jiang Q. Zhao Zhang X. Chen Chu Z. Ye Li Yin You Surface passivation film cells.Nat. Photonics. 2019; 13: 460-466https://doi.org/10.1038/s41566-019-0398-2Crossref (1891) 6Ma C. N.-G. realistic methodology 30% cells.Chem. 6: 1254-1264https://doi.org/10.1016/j.chempr.2020.04.013Abstract Full Text PDF (57) Scholar ease preparation low costs.7Mei A. Liu L. Ku T. Rong Xu M. Hu al.A hole-conductor-free, fully printable mesoscopic cell stability.Science. 2014; 345: 295-298https://doi.org/10.1126/science.1254763Crossref (2291) 8Chen Tang W. He Wang Xie Bi E. Grätzel solvent- vacuum-free route large-area films modules.Nature. 2017; 550: 92-95https://doi.org/10.1038/nature23877Crossref (483) 9Tan Jain Voznyy O. Lan García de Arquer F.P. Fan J.Z. Quintero-Bermudez R. Yuan B. solution-processed planar contact passivation.Science. 335: 722-726https://doi.org/10.1126/science.aai9081Crossref (1557) However, compared more than 20-year service time silicon-based poor bottleneck,10Gratia P. Grancini Audinot J.-N. Jeanbourquin Mosconi Zimmermann I. Dowsett D. De Angelis al.Intrinsic segregation at nanometer scale determines mixed cation/mixed cells.J. Am. Chem. Soc. 2016; 138: 15821-15824https://doi.org/10.1021/jacs.6b10049Crossref (120) 11Wang Shi Huang Stability cells: prospective substitution cation X anion.Angew. Int. Ed. Engl. 56: 1190-1212https://doi.org/10.1002/anie.201603694Crossref (354) 12Domanski K. Alharbi E.A. Hagfeldt Tress Systematic investigation impact operation conditions degradation behaviour Energy. 2018; 3: 61-67https://doi.org/10.1038/s41560-017-0060-5Crossref (383) 13Yang Fang Xiao Zhou Yu Gao al.Stabilizing surfaces wide-bandgap oxysalts.Science. 365: 473-478https://doi.org/10.1126/science.aax3294Crossref (362) 14Bai Da Fu Kawecki Sakai N. J.T.-W. al.Planar using ionic liquid additives.Nature. 571: 245-250https://doi.org/10.1038/s41586-019-1357-2Crossref (556) impeding commercialization PSCs. In fact, relies crucially stabilities themselves, closely related structures compositions. For example, black (i.e., ? phase), widely used compositions, bearing narrow band gap great high-temperature stability,15Eperon G.E. Stranks S.D. Menelaou Johnston M.B. Herz L.M. Snaith H.J. Formamidinium trihalide: broadly tunable heterojunction cells.Energy Environ. Sci. 7: 982-988https://doi.org/10.1039/C3EE43822HCrossref (0) 16Pang Lv Wei Qin Cui NH2CH=NH2PbI3: an alternative organolead sensitizer Mater. 26: 1485-1491https://doi.org/10.1021/cm404006pCrossref (440) 17Lee J.-W. Seol D.-J. Cho A.-N. High-efficiency polymorph HC(NH2)2PbI3.Adv. 4991-4998https://doi.org/10.1002/adma.201401137Crossref (706) 18Jeong Choi I.W. Go E.M. Jeong Jo H.W. al.Stable exceeding 24.8% 0.3-V voltage loss.Science. 369: 1615-1620https://doi.org/10.1126/science.abb7167Crossref (422) suffers into deactivated hexagonal non-perovskite (? room temperature.19Stoumpos C.C. Malliakas C.D. Kanatzidis M.G. Semiconducting tin organic cations: transitions, mobilities, near-infrared photoluminescent properties.Inorg. 2013; 52: 9019-9038https://doi.org/10.1021/ic401215xCrossref (3513) Some approaches, composition engineering,4Jeon Scholar,20Li J.-S. S.-H. Berry Zhu Stabilizing tuning tolerance factor: formation cesium solid-state alloys.Chem. 28: 284-292https://doi.org/10.1021/acs.chemmater.5b04107Crossref (1058) additive engineering,21Li Guo Qian Ion-exchange-induced 2D–3D HMA1-xFAxPbI3Cl MA1-xFAxPbI3 perovskite.Angew. 55: 13460-13464https://doi.org/10.1002/anie.201606801Crossref (64) Scholar,22Zhang Additive cells.Adv. 10: 1902579https://doi.org/10.1002/aenm.20190257Crossref epitaxial growth,23Masi Echeverría-Arrondo Salim K.M.M. Ngo T.T. Mendez P.F. López-Fraguas Macias-Pinilla D.F. Planelles Climente J.I. Mora-Seró Chemi-structural embedded quantum dots.ACS Lett. 5: 418-427https://doi.org/10.1021/acsenergylett.9b02450Crossref (37) Scholar,24Sánchez-Godoy H.E. Erazo Gualdrón-Reyes A.F. Khan A.H. Agouram Barea Rodriguez R.A. Zarazúa Ortiz Cortés M.T. al.Preferred growth direction PbS nanoplatelets preserves infrared light harvesting stable, reproducible, 2002422https://doi.org/10.1002/aenm.202002422Crossref (7) been applied suppressing improving power (PCE) introducing smaller halides Cl?, Br?, different sizes Cs+,25Lee D.-H. H.-S. S.-W. hybridization photo- moisture-stable cell.Adv. 1501310https://doi.org/10.1002/aenm.201501310Crossref (1008) 26McMeekin D.P. Sadoughi Rehman Eperon Saliba Hörantner Haghighirad Korte Rech mixed-cation mixed-halide absorber tandem 351: 151-155https://doi.org/10.1126/science.aad5845Crossref (1902) 27Saliba Matsui J.-Y. Domanski Nazeeruddin M.K. Zakeeruddin Abate Cesium-containing triple stability, reproducibility efficiency.Energy 9: 1989-1997https://doi.org/10.1039/c5ee03874jCrossref (3553) methylammonium (MA+).28Pellet Gregori T.-Y. Maier Mixed-organic-cation photovoltaics enhanced solar-light harvesting.Angew. 53: 3151-3157https://doi.org/10.1002/anie.201309361Crossref (935) 29Binek Hanusch F.C. Docampo Bein Stabilization trigonal iodide.J. Phys. 1249-1253https://doi.org/10.1021/acs.jpclett.5b00380Crossref (365) 30Weber O.J. Charles Weller Phase formamidinium-methylammonium hybrid solid solution.J. 4: 15375-15382https://doi.org/10.1039/C6TA06607KCrossref exact these ions unclear microscopic level no unified elucidating physical nature available yet. lack thorough has hampered rational optimization On other hand, Stoumpos al. first reported discovery polytypes tin–iodide large cations, be well understand molecular-level.31Stoumpos Mao Structure-band relationships low-dimensional perovskites.Inorg. 56-73https://doi.org/10.1021/acs.inorgchem.6b02764Crossref (133) Gratia (FAPbI3)1-x(MAPbBr3)x polycrystalline 2H-FAPbI3 4H-(FAPbI3)1-x(MAPbBr3)x, 6H-(FAPbI3)1-x(MAPbBr3)x finally 3C-(FAPbI3)1-x(MAPbBr3)x (cubic phase).32Gratia Schouwink Yum J.-H. Sivula Wirtz many faces ion perovskites: unraveling crystallization process.ACS 2: 2686-2693https://doi.org/10.1021/acsenergylett.7b00981Crossref (78) there between 6H 3C phases point view, characteristics 2H missing. Therefore, pure FA+ through incomplete thus hidden dopants unclear. Herein, intermediate, 8H-FAPbX3, subsequent in-depth analysis X-ray diffraction (SCXRD) measurements density functional theory (DFT) calculations, leads comprehensive essence governing perovskites, guidelines accurate preparations adopt crystals model systems33Dong Shao Mulligan Qiu Cao Electron-hole diffusion lengths >175 ?m solution-grown CH3NH3PbI3 crystals.Science. 347: 967-970https://doi.org/10.1126/science.aaa5760Crossref (3378) Scholar,34Shi Adinolfi V. Comin Alarousu Buin Hoogland Rothenberger Katsiev al.Low trap-state long trihalide 519-522https://doi.org/10.1126/science.aaa2725Crossref (3045) begin inspection characters two red FAPbBr3, were prepared inverse temperature strategy.35Zhang Benson E.E. van Lagemaat Luther J.M. Yan facile solvothermal CH3NH3Pb(Br1-xClx)3.Chem. Commun. 51: 7820-7823https://doi.org/10.1039/c5cc01835hCrossref (107) 36Saidaminov M.I. Abdelhady A.L. Murali Burlakov V.M. Peng Dursun Maculan al.High-quality bulk within minutes crystallization.Nat. 7586https://doi.org/10.1038/ncomms8586Crossref (1070) 37Liu Ren Sun al.Two-inch-sized CH3NH3PbX3 (X Cl, Br, I) crystals: characterization.Adv. 27: 5176-5183https://doi.org/10.1002/adma.201502597Crossref (714) 38Saidaminov Bakr O.M. Retrograde solubility enabling rapid growth.Chem. 17658-17661https://doi.org/10.1039/C5CC06916ECrossref To better describe during transition, unify lattice representations describing its sub-group rhombohedral lattice, where [111] [0001] corresponding lattice.32Gratia So can described coordination polyhedron packing Mark Weller,39Weller Weber Frost Walsh Cubic iodide, ?-[HC(NH2)2]PbI3, 298 K.J. 3209-3212https://doi.org/10.1021/acs.jpclett.5b01432Crossref (298) comprises isotropic [PbI6] (Figure 1A). polyhedrons same orientation locations labeled ABC (abbreviated phase). And spaces, created octahedron framework, occupy.19Stoumpos Thus distinctive features (3C Meanwhile, al.,19Stoumpos all repeat every reverse layers type location orientations AA? resultant z-direction channels reside 1B). Besides, pulverization observed process. Several sets spots reciprocal space appeared when 3C-FAPbI3 undergoing scanned globally diffractometer (Figures 1C S1). contrast, FAPbBr3 do transform 2H-FAPbBr3 even after exposure water oxygen S2A). traditional concepts like factor cannot explain bears parameter larger S2B). globularity should taken account that size rigidity, symmetry, chemical environment (halide ions) important.40Gholipour Ali A.M. Turren-Cruz Tajabadi Taghavinia al.Globularity-selected molecules generation multication perovskites.Adv. 29: 1702005https://doi.org/10.1002/adma.201702005Crossref (54) how efficiently Br? suppress partly substituted FAPb(I1-xBrx)3, further studied. gradually changed yellow ones contents bromine 33% 17% solutions, respectively S3). One FAPb(I1-xBrx)3 systems obtained. elucidated SCXRD detail below adopting above-presented linkage model. First, grown (100°C) solution bromide content. then transformed mother liquor 2 h temperature. After isolating quickly removing residual solvents, analyzed SCRXD. this solved refined, it named [PbX6] 1D, S4, S5), stacked eight sequence … ABCAA?C?B?A?ABCAA?C?B?A?…. ratio halogen Xcorner: Xface 3:1. More importantly, contains addition types cages, i.e., cage 2A, 2B, S6). enhances relationship filling three 1:2:1. indeed feature This exhibits characteristic powder XRD peaks 2? 13.24°, those S7 S8; Table Second, orange about S9–S11).32Gratia shows solvents accelerate explaining why so sensitive solvent atmosphere storage time. immediate removal crystals, slowed down became obvious weeks under influence air. Analogous six ABCC?B?A?ABCC?B?A?…, 2:1. Without occupy 1:1. Note exhibiting 12.27° directly containing reactant. Finally, small 4H 13.06° S12–S14) formed transformation or aging S15). four AA?B?BAA?B?B…, 1:1, leaving similar filled unavailable together long-range ordered far predict closer relationship. stack ABCABC...or...C?B?A?C?B?A?, generating number stacking three. exist AA?, BB?, CC?, resulting being produced whenever appear. As shown Figure 3, arrange ABCABC... continuously upper line reversing A?B?C?A?B?C?... line, letters pattern octahedrons. extend generate semicircles A, B, C units; they continue another semicircle reversed C?, B?, A? units crossing lines ends A?. circle means layer numbers phases. It noteworthy represent having identical orientation. change layers. way, depict correlation among discovered Moreover, may potential deactivation process, 10H-FAPbX3 12H-FAPbX3 4). Hence, intermediates set (3C) (2H). map fact iodine family (see supplemental information). mentioned above, very fast pulverization, making difficult capture without introduction bromide. likely present interfaces grain boundary, help S16). review our manuscript, presence 4H-FAPbI3 6H-FAPbI3 in-situ synchrotron GIWAXD technique.41Park B.-w. Kwon K.-j. Y.K. Im Shin T.J. S.Il. triiodide ?-phase isopropylammonium chloride 419-428https://doi.org/10.1038/s41560-021-00802-zCrossref (22) They found boundary FAPbI3, strongly support perovskites.Figure 4Summary Pb atoms five predicted FAPbX3View Large Image ViewerDownload Hi-res image Download (PPT) evolves fraction reduced S17; Tables S2 determined investigating electron cloud S18–S20; S4–S6) combining DFT calculations. Significantly lower densities, higher occupancies, sites sites, Pb–Br–Pb bond angle greater Pb–I–Pb refined structures. results show Cl? energies 5A, 5B, S21–S26; S7) repulsive forces adjacent Pb2+ arranged 5C). suggest locate rather ones, increasing thermodynamic system. agree third rule accommodating oxidation state tend share corners faces, order increase distances cations. chlorine stabilize octahedron, thereby preferential 3C-FAPbBr3 thermodynamically bromine-substituted eventually transforms That is, face-sharing, would unstable bromine-containing temporarily intermediates, enabled successful isolations According discipline above crystallographic changes, 3C- 2H-phase deduced FAPbI3. generated lead-halide changes framework evolves. (3C, 8H) (4H, 2H) (8H, 6H) 6H, 4H). transitions MAPb(I1-xBrx)3 CsPb(I1-xBrx)3 systems. Thus, assume influenced interactions verify conjecture, models 8H-CsFA7Pb8I24 8H-MAFA7Pb8I24 5D–5F, S27–S29, S30–S32) built as, isomers 2×2×1 supercells 8H-CsFA31Pb32I96 8H-MAFA31Pb32I92 S33–S35 S36–S38), analyze calculations (?E). note isomer accurately compare energy differences ?E increases slightly Cs+ MA+ significantly 5G), case S29). prefer occupying PWT program FA+. result smallest (56.6 Å3) largest (84.0 5G). rule, vice versa S39; S8).42Zhang Larson B.W. Dunfield S.P. Reid O.G. Beard M.C. al.Surface three-dimensional perovskitoid 774-785https://doi.org/10.1016/j.chempr.2020.12.023Abstract (5) Cs+, concentration Cs and/or MA S40). molecular significant effects stabilization. some important hints given above. instance, orange-red thin excess DMSO annealing 6A). controlled short possible, fresh delicate glove box consideration preparation.43Wang Meng Du al.Perovskite aging: what happened inhibit?.Chem. 1369-1378https://doi.org/10.1016/j.chempr.2020.02.016Abstract (26) terms stoichiometry. When FAI (FAPbI3)0.83(MAPbBr3)0.17, peak 12.2° appears unannealed 6B). promote inhibiting MA2Pb3I8·2DMSO solvate phase.44Szostak Marchezi P.E. Marques A.d.S. da Silva J.C. Holanda M.S. Soares M.M. Tolentino H.C.N. Nogueira Exploring formamidinium-based antisolvent methods: situ GIWAXS spin coating.Sustain. Fuels. 2287-2297https://doi.org/10.1039/C9SE00306ACrossref Once formed, 3C-perovskite crystallinity FAI-deficient system PbI2 excess) 6C S41).45Bi Dar Luo Renevier Schenk Giordano Correa Baena luminescent tailored perovskites.Sci. Adv. 2e1501170https://doi.org/10.1126/sciadv.1501170Crossref (1426) films, PCE S42). devices avoid 4H/6H/8H-FAPbX3 easier 3C-phase. Interestingly, appear annealed salts MAI CsI 6D), suggests partial impede Third, considering synergistic stabilization, replacement reducing content 10% reduce segregation, (FAPbI3)0.9(MAPbBr3)0.05(CsPbBr3)0.05.46Chen Tan Y.-Y. Z.-X. Nan Z.-A. L.-Q. Hui J.-X. Zhan al.Toward stability: single-crystal alloys cesium-containing perovskite.J. 141: 1665-1671https://doi.org/10.1021/jacs.8b11610Crossref (68) Such excellent years water/oxygen 6E). Furthermore, anion, MACl effective prepare 3C-phase less 6F).47Kim G.-H. T.K. Y.J. J.W. Huh al.Methylammonium induces cells.Joule. 2179-2192https://doi.org/10.1016/j.joule.2019.06.014Abstract (616) guidance, quality optimized 1.59 eV bandgap reach 21% any interface passivation. best negligible hysteresis effect keeps 90% initial 1,000 20% humidity S43). successfully include kinds (cubic, peanut-like, olive-like) structure. discoveries 8H-FAPbX3 bridge establish picture correlates experimentally view. combined revealing intrinsic proven preference anions’ cations’ occupation obey rules, namely energetically keys maximize Further, fabricated optimizing presented work provide basis cells.
منابع مشابه
Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth.
Here we show the retrograde solubility of various hybrid perovskites through the correct choice of solvent(s) and report their solubility curves. Retrograde solubility enables to develop inverse temperature crystallization of FAPbX3 (FA = HC(NH2)2(+), X = Br(-)/I(-)). FAPbI3 crystals exhibit a 1.4 eV bandgap--considerably narrower than their polycrystalline counterparts.
متن کاملPersistent Dopants and Phase Segregation in Organolead Mixed-Halide Perovskites
Organo lead mixed -ha l ide perovsk i t e s such as CH3NH3PbX3−aX′a (X, X′ = I, Br, Cl) are interesting semiconductors because of their low cost, high photovoltaic power conversion efficiencies, enhanced moisture stability, and band gap tunability. Using a combination of optical absorption spectroscopy, powder X-ray diffraction (XRD), and, for the first time, Pb solid state nuclear magnetic res...
متن کاملLarge polarons in lead halide perovskites
Lead halide perovskites show marked defect tolerance responsible for their excellent optoelectronic properties. These properties might be explained by the formation of large polarons, but how they are formed and whether organic cations are essential remain open questions. We provide a direct time domain view of large polaron formation in single-crystal lead bromide perovskites CH3NH3PbBr3 and C...
متن کاملPhotodetectors Based on Organic–Inorganic Hybrid Lead Halide Perovskites
Recent years have witnessed skyrocketing research achievements in organic-inorganic hybrid lead halide perovskites (OIHPs) in the photovoltaic field. In addition to photovoltaics, more and more studies have focused on OIHPs-based photodetectors in the past two years, due to the remarkable optoelectronic properties of OIHPs. This article summarizes the latest progress in this research field. To ...
متن کاملmodeling loss data by phase-type distribution
بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chem
سال: 2021
ISSN: ['2451-9308', '2451-9294']
DOI: https://doi.org/10.1016/j.chempr.2021.07.011